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Measurement of diffusion in the presence of shear flow
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Abstract

We demonstrate here a method whereby molecular diffusion coefficients may be measured in the presence of the deformational flow
field of a rheo-NMR cell. The method, which uses a repetitive CPMG train of rf pulses interspersed with magnetic field gradient pulses,
allows the anisotropic diffusion spectrum to be directly probed. We focus on the cylindrical Couette cell, for which the radial, tangential,
and axial directions correspond to the hydrodynamic velocity gradient, velocity, and vorticity directions. While ideal Couette flow does
not perturb the vorticity direction, it does perturb diffusion measurements for the velocity gradient direction, and to a lesser extent, the
velocity direction. We show that with closely spaced gradient pulses operating in a flow-compensating mode, there exists a diffusion limit
below which one cannot measure, that scales as T 2 _c4, where _c is the shear rate and T the gradient pulse repetition period. For a typical
rheo-NMR cell, and for the more challenging velocity gradient direction, diffusion rates above 10�12 m2 s�1 can be accurately measured
(to 1% error) at shear rates up to 3 s�1. We demonstrate the use of the method in measuring the diffusion spectrum of a lyotropic lamellar
phase under shear.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Flow; Diffusion; Rheology; Rheo-NMR
1. Introduction

The emerging field of rheo-NMR [1–3] involves not only
the mapping of velocity fields but also the measurement of
NMR spectroscopic parameters under shear and extension-
al flow. Such measurements provide unique insight regard-
ing molecular organisation, orientation, and dynamics in
the subtle interplay between flow and meso-structural rear-
rangement. For many NMR parameters, such as relaxation
times, chemical shifts, quadrupolar, and dipolar splittings,
the presence of shear flow is of no particular concern,
although the flow of spin-bearing fluid elements can intro-
duce spectral, or relaxivity perturbation if the magnetic
field is insufficiently homogeneous, while rotation of the
hydrodynamic axes during circulating flow may confound
measurements of molecular orientation by means of quad-
rupolar or dipolar spectroscopy [4]. This latter phenome-
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non has been discussed in an earlier paper [5]. In all
rheo-NMR endeavours, these potential perturbative effects
must be considered and their influences carefully quanti-
fied. Generally, their presence will set an upper limit to
the shear or extension rates at which phenomena may be
investigated.

One particular class of NMR parameter of interest con-
cerns the molecular self-diffusion coefficients associated
with the anisotropic diffusion tensor [6–8]. To measure
Brownian motion in the presence of a deformational flow
field presents a particular challenge. The use of magnetic
field gradient pulses in conjunction with spin-echoes to
track the diffusive displacements relies on the spin dephas-
ing associated with stochastic motions [9]. However, defor-
mational flow itself causes a separation of molecules which
begin in proximity, also leading to a spreading of spin
phases over the spin echo. One might approach this prob-
lem by ensuring that the echo duration is sufficiently short
that no flow effects are present, but of course, this will also
reduce the diffusive dephasing. The solution which we
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demonstrate here is the use of a repetitive train of closely
spaced spin echoes, organised in such a way that flow
effects are successively cancelled by effective gradient rever-
sal, while the stochastic effects of Brown motion persist,
allowing a steady accumulation of phase spreading which
arises from diffusion alone [10]. The method allows for
the measurement of diffusion in different hydrodynamic
directions simply according to the direction of application
of the pulses gradients. The pulse sequence tool used is the
Carr–Purcell–Meiboom–Gill rf train [11] in which pulses of
magnetic field gradient are suitably interspersed. One
intriguing aspect of this method is that the time domain
of the diffusion measurement is no longer well defined,
although there is defined a very special timescale, the cyclic
period of the effective gradient waveform. The natural
description of this experiment lies in the frequency domain,
and the method in fact measures the diffusion spectrum,
that is, the spectrum of the velocity autocorrelation spec-
trum [6,12,13].

The particular rheo-NMR geometry that we consider
here is the Couette cell. Rotation of the inner cylinder
results in a shearing flow within the annular gap. The nat-
ural hydrodynamic axes are velocity (tangential), velocity
gradient (radial), and vorticity (axial) as shown in Fig. 1.

Ideally, the rotational flow causes no displacement along
the vorticity axis (although deviations from ideality may do
so). The particular challenge to be met in measuring molec-
ular self-diffusion will apply to the tangential and radial
directions. It is especially interesting to be able to make
such measurements. For example, shear flow may induce
orientation of meso-phases with respect to the hydrody-
namic axes, resulting in anisotropic diffusion. Such diffu-
sion anisotropy may also result from the deformation of
molecular aggregates (such as micelles) under flow, as well
the deformation of large polymer molecules. Shear flow is
also known to induce phase transitions, and to cause the
separation of some complex fluids into shear-banded
states. In every one of the examples quoted, one might
expect a consequential diffusion anisotropy.

Having noted the importance of diffusion measurement in
rheo-NMR, and having outlined a method by which such
Fig. 1. Velocity (tangential) v, velocity gradient (radial) $v and vorticity
(axial) $ · v, directions for Couette cell with rotating inner cylinder.
measurement can be achieved, it must be noted that the effect
of flow will always be to induce artifacts above some limiting
rate-of-strain, unless the gradient waveform period may be
arbitrarily shortened. Instrumental limitations will always
intervene to place a lower limit on the period, T, of the wave-
form. In this work, we seek to establish a method whereby
the diffusive perturbation may be calculated for any shear
rate and any period, giving guidelines for estimating the lim-
its to diffusion measurement in Couette cells. While the
method presented here is peculiar to the Couette, it may be
easily generalised to other geometries.

2. Theory

2.1. Multi-echo PGSE NMR

Molecular self-diffusion is traditionally measured in
NMR by means of the pulsed gradient method of Stejskal
and Tanner [9] . A fundamental element of the Pulsed Gra-
dient Spin Echo NMR (PGSE NMR) method is the appli-
cation of two (oppositely signed) magnetic field gradient
pulses of equal amplitude, g, and duration d separated by
an ‘‘observation time’’ D. This results in the labelling of
the (typically proton) spins with a phase proportional to
the gradient amplitude and duration and to the change of
position of the water molecules over the observation time.
Provided that this motion is purely self-diffusive, the atten-
uation of the resulting spin-echo signal amplitude can be
used to determine the mean-squared displacement of water
molecules over the time D.

In the case of shear, however, the spin phases contain a
contribution arising from the inhomogeneous flow, so that
dispersive contributions to the echo amplitude may domi-
nate. Provided that the flow does not change over the dura-
tion of the pulse train, this effect can be removed by
repeating the pair of encoding gradients [8,10], but with
inverted effective polarities (see Fig. 2). The flow contribu-
tion to the overall displacement is then compensated leav-
ing only the contribution of the irreversible displacements
due to diffusion [10,14]. Where a rotating flow field is
employed, as in the Couette cell case to be discussed here,
the flow cannot, of course, be constant in any Cartesian
sense. Further, there is little purpose in trying to compen-
sate by rotating the gradients [15], since the rotational
velocity varies across the annular gap of a Couette cell.
Any efficient flow compensation will therefore require the
shortest possible time delays between gradient pulses, so
that any changes in direction of the local velocities is mini-
mised. This places an upper limit on the longest observa-
tion time D that may be used at a given shear rate, in
turn requiring short duration gradient pulses. This restric-
tion gives little time between the pulses for the spins to dif-
fuse, leading to difficulties in the estimation of the diffusion
coefficient. However, by successive repetition of the com-
pensated gradient pulse pairs, sufficient attenuation may
be achieved for accurate diffusion coefficient determination
[16,17].



Fig. 2. Multi-echo CPMG gradient train which interspersed gradient
pulses. In practice, the centre two pulses are made contiguous so that
D � T/2 � d.
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In this sense, we may consider the overall effect of an
echo train consisting of N periods of alternating gradient
pulses, as the successive application of 2N Stejskal–Tanner
experiments in which the successive stochastic phase sprea-
dings are independent, leading to a total mean-squared
phase comprising the sum. In this Gaussian approxima-
tion, accurate because of the individually small phase
migrations at each gradient pulse pair, the net echo atten-
uation at the end of the train is given by [12,13,16]:

EðgÞ ¼ exp �2Nc2d2g2DðD� 1
3
dÞ

� �
. ð1Þ

Strictly, given finite gradient pulse risetimes (limited by
the need to avoid eddy current effects), one needs to take
into account the trapezoidal character of the gradient puls-
es, now taken trapezoidal rather than simply rectangular.
The exact expression for the attenuation can thus be
deduced from the standard correction to the Stejskal–Tan-
ner expression [18],

EðgÞ ¼ exp �2Nc2g2D d02ðD� 1
3
d0Þ þ e3

30
� d0e2

6

� �� �
; ð2Þ

where d 0 = d + e, d being the duration of the gradient pulse
maximum and e the pulse rise and fall time. Henceforth we
shall, for simplicity, write the product
c2g2fd02ðD� 1

3
d0Þ þ e3

30
� d0e2

6
g as q2Deff, although the exact

expression will always be implied.

2.2. The diffusion spectrum

While Eqs. (1) and (2) provide an accurate means of
measuring the apparent diffusion coefficient, D, the inter-
esting question arises as to how we should interpret this
quantity, and in particular, what timescale we should attri-
bute to its measurement. First, we should strictly write it as
the diagonal element of the diffusion tensor [6], Daa where
the subscript a refers to either the velocity, gradient or
vorticity direction. In fact, the quantity measured is the ele-
ment of the diffusion tensor spectrum, Daa (x), at the angu-
lar frequency, 2p/T. This interpretation is made possible as
described in various papers by Stepisnik et al [12,13,16,19].
The CPMG multi-echo PGSE NMR experiment has been
demonstrated and analysed by Callaghan and Stepisnik
[16] and used in a number of applications [16,17,20]. The
multi-echo train imparts successive attenuations to the ech-
oes, and is sensitive to the details of the diffusive process
through the periodic excursions of the spin phases caused
by the successive, oppositely signed, gradient pulse pairs.
The rf/gradient train can be represented by a pure effective
gradient train [12], g*(t), the successive sign of the effective
gradient being alternated by the effect of the rf pulses (see
Fig. 2). The fundamental period of this effective gradient
train is written T and its effect is best analysed in the fre-
quency domain of the motion, using the frequency charac-
teristics of the periodic gradient pulse train. For a train of
many periods, i.e., with total duration much longer than T,
the train has narrow spectrum of characteristic cyclic fre-
quency 1/T.

In the Stepisnik description [12], the echo attenuation of
the gradient train is written as:

E ¼ exp � c2

2p

Z 1

�1
F ðxÞj j2DaaðxÞdx

� �
; ð3Þ

where F ðxÞ ¼
R1

0
F ðtÞeixt dt and F ðtÞ ¼

R t
0

g � ðt0Þdt0. The
diffusion spectrum, in this context, is simply the Fourier
transform of the molecular velocity autocorrelation func-
tion [6],

DaaðxÞ ¼
Z 1

0

< vað0ÞvaðtÞ > e�ixt dt; ð4Þ

where a is one of the (chosen) axis directions, x, y or z.
Eq. (3) indicates that the experiment is sensitive to the

region of the diffusion spectrum sampled by the frequency
characteristic of the gradient sequence. More precisely, for
an N period multi-echo train,

F ðxÞj j2 ¼ 2cgd
x

� 	2
sin2ðNxT=2Þ
cos2ðxT=2Þ sin2ðxT=8Þ. ð5Þ

The essential features of Eqs. (3) and (5) are shown in
Fig. 3. The effective gradient spectrum consists of one main
lobe centered at x = 2p/T. It is therefore possible to mea-
sure the diffusion spectrum by appropriately varying the
period of the NMR sequence. Of course, the frequency
dependence of the diffusion spectrum depends on the
details of molecular displacement fluctuations in the system
under study.

2.3. The diffusion measured for a sheared fluid in a Couette
cell

The rapid application of alternating sign effective gradi-
ent pulses causes coherent motion to be removed. However



Fig. 3. Schematic effective gradient spectrum used to sample the diffusion
spectrum D (x).

Fig. 4. (A) Multi-pulsed gradient spin echo experiment in which a
repetitive train of repeated four diffusion-encoding gradient pulses is
followed by slice selective rf/gradient pulse combinations. Note that the
two pairs of gradient pulses depicted have opposite effective sign for
motion encoding. The diffusion-encoding gradient, ga may be applied
along any of the Cartesian axes. (B) Selective excitation enables
measurement on a chosen slice.
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changes in coherent motion will contribute to phase shifts
whose size diminishes as the period of gradient sign alter-
nation reduces. In a Couette cell, where diffusion is to be
measured in the flow-gradient plane (i.e., tangential and
radial to the flow), there will always be a finite phase shift
arising from coherent motion change because of the rota-
tional nature of the flow. Further, because the angular
speed of that rotation changes across the annular gap in
shear flow, the application of rotating gradients in an
attempt to avoid that phase change, can only work for
one singular radial point in the gap. We shall show, howev-
er, that for any known periodicity, rotation rate, and
expected diffusion coefficients, the bounds over which the
modulated gradient train gives an accurate result, may be
clearly defined. Indeed, we show that for practical values
of the alternation period (for example, around 10 ms)
anisotropic diffusion, over the range 1–0.001 Dwater may
be practically measured in a 1 mm gap at shear rates up
to 3 s�1. The theory presented here enables the experiment-
er to determine limits for any experimental situation.

The principle behind our calculation method is shown in
Fig. 4. Ideally, the alternating sign effective gradient train is
applied via a CPMG sequence of rf pulses, with four iden-
tical infinitesimally narrow gradient pulses, applied at times
(0,T/2,T/2,T) over the cycle period T, with a total of N

cycles being used over the entire evolution time of the train.
With finite pulses, of duration d, the commencement of the
pulses is at (0, T/2 � d,T/2,T � d). In the slice selection
experiment which we use (see Fig. 4), the train is immedi-
ately followed by a slice selection rf pulse which is used
to define the region of the Couette cell from which the sig-
nal is to be acquired. To find the signal amplitude we must
integrate across the gap, allowing for the local radially
dependent signal phase encoding over the entire history
of the pulse sequence.

There are two parts to the calculation. The first takes
account of flow only, which is assumed to be laminar,
and, for the purposes of this exercise, the flow profile
v (r), with angular equivalent x (r), associated with a New-
tonian fluid. It is however a trivial matter to carry out the
following calculation with any known flow profile. Note
that at each radius, the fluid element to be detected in the
final slice selection, has been encoded over a history of pri-
or locations, described by a local azimuthal angle h (t). The
second part takes account of the locally anisotropic diffu-
sion. Here, each quadruplet of gradient pulses in the cycle
results in an attenuation factor, depending on the local azi-
muthal orientation of that radial fluid element at each cycle
step in the prior history.

2.3.1. The flow contribution

We begin by writing the radial dependence of angular
velocity for Newtonian flow between the inner cylinder of
outer radius r1, with wall angular speed x (r1) and the outer
cylinder with inner radius r2 and angular speed zero. A no
slip condition is assumed,

xðrÞ ¼ xðr1Þð
r2

2

r2 � 1Þ=ðr
2
2

r2
1

� 1Þ. ð6Þ

For any element of fluid at radius r, its azimuthal angle
with respect to the slice location at time t before slice selec-
tion and detection is given by (see Fig. 5):

hðtÞ ¼ xðrÞðNT � tÞ. ð7Þ
Note that the inclusion of the (usually short) time of

selection is straightforward and represents a minor pertur-
bation in the analysis. Note further that slice selection gen-
erally results in signal acquisition from two regions of the
annulus separated by angle p.



Fig. 5. Local azimuth of fluid to be ultimately detected in the chosen slice, at
a prior time before slice selection and during gradient encoding for motion.
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For each gradient pulse of area q (i.e., gd), the locally
acquired phase factor is exp (iqr sin (h (t)) for tangential dif-
fusion measurements (x-encoding) and exp (iqr cos (h (t))for
radial diffusion measurements (y-encoding), as shown in
Fig. 5. For the nth gradient pulse period (n = 1–N), the
local time for commencement of each of the four compo-
nent gradient pulses is t = nT � T, nT � T/2 � d, nT � T/
2, nT � d with corresponding signs of the phase factor
exponents, +,�,�,+.

Allowing for signal contributions from both slice arcs at
opposite sides of the Couette cell, and assuming a narrow
gap the flow contribution to the normalised signal attenu-
ation, for the respective cases of tangential (x-gradient
pulses) and radial (y-gradient pulses) is given by:

EtðqÞ ¼
1

r2� r1

Z r2

r1

cos

 
4qr sin xðrÞ 1

4
T � 1

2
d

� �� 	

� sin xðrÞ1
4

T
� 	XN

n¼1

sin xðrÞ N � nþ 1

2
T

� 	� 	!
dr;

ErðqÞ ¼
1

r2� r1

Z r2

r1

cos

 
4qr sin xðrÞ 1

4
T � 1

2
d

� �� 	

� sin xðrÞ1
4

T
� 	XN

n¼1

cos xðrÞ N � nþ 1

2
T

� 	� 	!
dr;

ð8Þ

Note that use excitation of a semi-rectangular arc by the
slice selection rf pulses dictates the integration over dr, and
not 2prdr. The summation term takes account of the azi-
muthal angular displacement away from the ideal orienta-
tion, during the N prior gradient pulse cycles, the radial
attenuation being more severely affected by this artifact.
The sinðxðrÞ 1

4
T Þ term arises from the change in fluid

element flow orientation during those cycles. It expresses
the capacity of the four pulse cycle to compensate the
changes in velocity during rotational flow.
2.3.2. The diffusive contribution

Of course, Eq. (8) represents the effective signal attenua-
tion in the absence of diffusion. Suppose now that super-
posed on the flow is an anisotropic molecular diffusion
(Dt,Dr). It is these two values that we seek to measure. Thus,
one would hope that the attenuation due to diffusion will sig-
nificantly outweigh that due to flow artifacts. Note that
again, the existence of an azimuthal angular offset during
the prior gradient pulse train induces a potential artifact,
namely the tendency to admix tangential and radial diffusion
components. Each quadruple (i.e., cyclic period) of gradient
pulses applied along the x-axis imparts, for a fluid element at
radius r, an attenuation exp(�q2cos2 (x (r) (N � n)T)DtT +
sin2 (x(r) (N � n)T)DrT) giving a total attenuation, at that
radius, of

EðDt;Dr; rÞ ¼ exp �q2
XN

n¼1

cos2ðxðrÞðN � nÞT ÞDtT

" 

þ sin2ðxðrÞðN � nÞT ÞDr

#
T

!
. ð9Þ

For slow angular speeds, this reduces to
exp(�q2NDtT), the ideal result. When the gradient is
applied along the y-axis then the same expression applies
but with Dt and Dr interchanged. Thus, combining Eqs.
(8) and (9), we find

EtðqÞ ¼
1

r2 � r1

Z r2

r1

EðDt;Dr; rÞ

� cos

 
4qr sin xðrÞ 1

4
T � 1

2
d

� �� 	
sin xðrÞ 1

4
T

� 	

�
XN

n¼1

sin xðrÞ N � nþ 1

2
T

� 	� 	!
dr;

ErðqÞ ¼
1

r2 � r1

Z r2

r1

EðDt;Dr; rÞ

� cos

 
4qr sin xðrÞ 1

4
T � 1

2
d

� �� 	
sin xðrÞ 1

4
T

� 	

�
XN

n¼1

cos xðrÞ N � nþ 1

2
T

� 	� 	!
dr. ð10Þ

We will use these equations to determine the effective
diffusion coefficient by comparing the calculated attenua-
tion with that given by Eq. (1). Further, by setting the real
diffusion coefficients, Dt and Dr to zero, and ascertaining
the apparent perturbative diffusion coefficients predicted
by Eq. (10), we are able to establish scaling laws for depen-
dence of this perturbation on T and the shear rate _c. How-
ever, we are also able to deduce this effect in a slightly
simplified analysis as follows.

2.3.3. Simplified analysis

In the treatment above, the progressive azimuthal
displacements of the fluid during the gradient pulses
is accounted for. A simpler description results if we



Fig. 6. Multi-echo CPMG sequence measurements of (radial) echo
attenuation for pentanol under zero shear rate, showing the independence
of diffusion coefficient on waveform period.

Fig. 7. Flow contribution to apparent diffusion (radial encoding) for
various values of the strain rate and the CPMG period time, T for which
the total encoding time is 300 ms, considerably longer than used in the
experiments reported in Fig. 11. Except where shown, the error bars in the
measurements are on the order of or smaller than the symbol size. The
dashed line is for ‘‘exact’’ model of Eq. (8). The solid line is for the
simplified analysis represented by Eq. (14) and does not take account of
the changing azimuthal angle over the encoding period.
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consider an element of fluid, in the chosen slice, from the
perspective of one single four gradient pulse period, then
simply multiply successive attenuations, assuming that all
fluid elements remain fixed. This treatment allows us to
ascertain the scaling laws governing the dependence on
apparent diffusive perturbation on T and _c and is quite
accurate providing the angular excursions remain small
(xnT� p).

Consider the attenuation arising from an single cycle of
4 gradient pulses applied in the direction a. The first pair
record a velocity va and the second, v0a resulting in a phase
factors dependent on the change of velocity Dva. Allowing
that the attenuation will be small, we may use the cumulant
expansion to write the echo attenuation factor as

hexpðiqDvaDÞi ¼ expðiqhDvaiDÞ

� exp �1
2
q2 hDv2

ai � hDvai2
n o

D2

 �

; ð11Þ

where the angular brackets incorporate integration over
the entire sample region represented by the excited slice.
Allowing for the contribution of slice segments at 180�
opposition we find ÆDvaæ = 0. The effective diffusion
coefficient arising from Eq. (11) is determined by noting
that for the four gradient pulses cycle diffusive attenua-
tion should be given by exp [�2q2Dapp (D � d/3)] leading
to

Dflow ¼
< Dv2

a > D2

4Deff

. ð12Þ

For the tangential direction (a = x) the value of Dvx in
the case of the Couette cell at all radii is zero to first order,
because of symmetry. For the radial direction velocity
(a = y) Dvy at any radius r in the annulus may be calculated
from a knowledge of the local angular velocity, namely
Dvy = rx (r)2D. In terms of the angular speed of the inner
cylinder, the inner and outer radii of the gap, we find, for
Newtonian flow [21],

Dv2
yðrÞ ¼

D2x4r2

ðr2
2 � r2

1Þ
r2

2 � r2

r2

� �4

. ð13Þ

Integrating Dv2
y over the gap to obtain < Dv2

y >, allow-
ing D = T/2, we find

Dflow ¼ kT 3 _c4; ð14Þ
where k is a function of r1, r2, and x obtained from the gap
integral.

It should be noted that this contribution to the apparent
diffusion coefficient from the flow will add to the true self-
diffusion coefficient arising from Brownian motion. This
the condition that the flow contribution should be insignif-
icant amounts to Dflow� DBrownian. While the major influ-
ence of flow will be on the radial component of diffusion,
the finite angular displacement which occur during the
CPMG encoding also lead to a weaker perturbation to
the tangential component. This latter effect is accounted
for in Eq. (10).
Finally, we test our multi-echo train in the measurement
of diffusion in a simple fluid under shear and then we apply
it to the measurement of anisotropic diffusion in a lamellar
phase lyotropic liquid crystal, showing that we are able to
accurately measure diffusive behaviour up to the maximum
shear rate of 15 s�1.



Fig. 8. Theoretical and experimental echo attenuations for pentanol at various shear rates, increased from left to right, top to bottom as 1 s�1, 5 s�1,
10 s�1 and 15 s�1 and for various gradient pulse periods, T, as shown, for the case of a single four pulse train.

Table 1
Comparison of qmin values for oscillatory echo attenuation decays, as predicted by the simple ‘‘flow diffraction’’ picture of the gap-averaged Fourier
spectrum of the probability distribution, and those vales seen experimentally

_c (s�1) T = 80 ms; D = 37.17 ms T = 120 ms; D = 57.07 ms T = 200 ms; D = 97.07 ms

qmin (theor) qmin (exp) qmin (theor) [m�1] qmin (exp) [m�1] qmin (theor) [m�1] qmin (exp) [m�1]

10 — — 8.6 · 104 10 · 104 2.9 · 104 3.2 · 104

15 9.3 · 104 m�1 10 · 104 m�1 3.8 · 104 4.2 · 104 1.3 · 104 1.3 · 104
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3. Experiment

A test of the effectivenes of the CPMG gradient pulse
train in measuring diffusion in the presence of shear was
carried out using a sample of pentanol (Aldrich, Castle
Hill, NSW, Australia)) for which the diffusion coefficient
is 2.9 · 10�10 m2 s�1 at 22 �C.

All measurements were carried out at 22 �C using a Bru-
ker Avance 300 MHz NMR spectrometer, using the three-
axis magnetic field gradients of the Micro2.5 probe. Shear
is applied using a Couette cell made of two concentric glass
NMR tubes of 16 mm (OD) and 18 mm (ID), respectively.
The Couette cell vorticity axis is aligned parallel to the (ver-
tical) direction of the polarizing magnetic field. The inner
cylinder can be rotated within the NMR spectrometer by
means of a specially constructed shaft and stepper-motor-
gearbox drive.

In our experiment we wish to select a small arc of the
Couette cell so that the velocity and gradient directions
are well defined. This is achieved by means of two
‘‘slice-selective’’ radiofrequency pulses applied in combi-
nation with magnetic field gradients. One slice (thickness
30 mm) is taken perpendicular to the longitudinal (vor-
ticity) axis of the Couette cell and defines the longitudi-
nal section to be averaged. The other slice (thickness
3 mm) is taken perpendicular to a diametral direction.
This choice of selected sample volume defines a simple
three-dimensional cartesian system along which one can
apply the diffusion-encoding gradients. These correspond
to the directions x (tangential = velocity direction (v), y

(radial = velocity gradient direction ($v) and z (longitu-
dinal = vorticity direction ($ · v). Angular velocities are
varied to provide shear rates ranging from 10�2 to
15 s�1. In all diffusion experiments, the NMR signal
was detected using the proton nucleus.

Each experiment is carried out at fixed N and T by vary-
ing the gradient amplitude, g. By this means, relaxation
effects are normalised. Fig. 6 shows a set of calibration



Fig. 9. Flow contributions to apparent diffusion calculated using Eq. (8),
for encoding in the radial (dashed lines) and tangential (solid lines) for a
range of shear rates and cycle periods, for the case of the cylindrical
Couette cell used in this work.
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measurements on pentanol over a variety of periods T, but
with NT fixed at around 300 ms.

The system studied here is 30% w/w cetylpyridinium
chloride and hexanol diluted in brine (1% w NaCl). All
materials were purchased from Sigma–Aldrich. Samples
were prepared at room temperature and allowed to equili-
brate for one week before use. The mass ratio hexanol/
CpCl is taken from the phase diagram [22] and at 0.92 is
designed to provide a lamellar phase remote from any
phase boundaries.

4. Results

4.1. Flow artifacts for radial measurement

Below 5 s�1, measurement of the diffusion coefficient of
pentanol was sufficiently accurate, that no flow contribu-
tion was able to be ascertained, independent of the period
of the gradient pulse train used. At shear rates above 5 s�1,
the accurate measurement of pentanol diffusion in the radi-
al direction depends on the use of a short period gradient
train. The flow contribution to pentanol diffusion, is mea-
sured by subtracting the known (measured at zero shear)
pentanol diffusion coefficient from that measured under
shear using a train of gradient pulses of total duration,
NT = 300 ms. This is a rather long encoding time com-
pared with most practical measurements and is chosen to
deliberately exaggerate the flow contribution to diffusion.

To test the ability of both the simple theory and the
more exact treatment of Eq. (10) to represent the data we
show, in Fig. 7, the dependence of the radial component
of Dflow on both shear rate and cycle period, T. There is
noticeable agreement between the exact model theoretical
predictions (Eq. (8)) and the data obtained by observing
the artifactual enhancement the observed pentanol diffu-
sion coefficient. By contrast, the simple scaling law of Eq.
(14) breaks down since it fails to allow for the effect of
the changing azimuthal angle over the encoding period a
T is increased. Eq. (14) does however appear to correctly
represent the scaling of Dflow with shear rate.

It is interesting to consider how accurately one could
measure a radial diffusion coefficient of 1 · 10�10 m2 s�1

given the effect of Dflow. Note that at T = 100 ms, the per-
turbation for 5 s�1 is around a factor of 3 whilst for 15 s�1it
is a factor of 200. By contrast at T = 8 ms, the measure-
ment is accurate to 10% error at all shear rates up to
5 s�1 while it is perturbed by a factor of 2 at 15 s�1 (see
Fig. 7). By choosing a shorter total encoding period, NT,
these errors may be considerably reduced.

An exceptionally sensitive test of the theory applies at
the highest strain rates and at long periods, T. In this
region, a gaussian behaviour for the echo attenuation
following Eq. (1) (i.e., attenuation as a semlogarithmic
dependence on q2) is no longer observed. In seeking to rep-
resent the echo attenuation data for a finite value of solvent
diffusion, Eq. (10) should be capable of predicting the
shape at finite q values at all values of shear rate and period
time T.

Using a single period echo train we seek to investigate
this behaviour. Remarkably, an oscillatory echo decay is
observed (see Fig. 8), an effect displayed clearly by plotting
the echo amplitude versus logq. The set of experiments
shown were performed using a single four pulse gradient
cycle of duration T, varying T for different shear rates.
The agreement between the data and the predictions of
Eq. (10) are sufficiently close to give one confidence in
the analysis. It should be noted that very small deviations
from the Newtonian flow profile assumed here can cause
a distinct change in the oscillatory echo behaviour. One
intriguing aspect is the influence of Taylor dispersion,
which we have not accounted for here. The RMS displace-
ments across streamlines over the longest period cycle of
200 ms would be on the order of 10 lm, probably insuffi-
cient to cause a major deviation from ideal Newtonian
behaviour for the 1 mm gap employed here.

Note that we may gain some intuition regarding the
oscillation in the echo attenuation by considering the
gap-averaged Fourier spectrum of the probability distribu-
tion for change in velocity over the effective gradient peri-
od. This suggests an oscillatory behaviour represented by

sin c q
2

ðDr2
1
x1Þ2

ðr2þr1Þðr2
2
�r2

1
Þ


 �
, an expression which suggests an echo
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minimum at qmin

2

ðDr2
1
x1Þ2

ðr2þr1Þðr2
2
�r2

1
Þ ¼ p. Table 1 compares observed

minimum q values with those suggested by this analysis.
The agreement is good.

4.2. Comparative Flow artifacts for radial and tangential

measurement

Fig. 9 shows the predictions of Eq. (10) for the depen-
dence of the artifactual Dflow versus T and _c calculated
by setting the true molecular diffusion coefficients,
Dt = Dr = 0. It is clear that at sufficiently low shear rates
and period times, these follow the approximate scaling laws

Drv
flow � T 2 _c4;

Dv
flow � T 2 _c6. ð15Þ

Note that the quadratic T scaling found here differs from
the cubic of the simple model where the effect of azimuthal
reorientation is ignored.

It should be noted that one of the consequences of the
azimuthal angle deviation during the echo train gradient
encoding prior to slice selection, is that the radial and tan-
gential directions become admixed. This may inhibit the
measurement of diffusion anisotropy. Indeed, for correct
Fig. 11. Attenuation of the (radial and tangential) signals due to the diffusion
shear rate is increased successively (left to right) from 0.05 s�1 to 5 s�1 to 15 s�

occurs. The flow effect on diffusion measurement is weak, as indicted by the
influence of flow effects begin to be seen on the radial diffusion.

Fig. 10. Attenuation of the signal due to the diffusion of water molecules with
applied in the radial direction. The changes in the initial slope of the echo att
measurements of anisotropy by a factor g = Dr/Dt one
requires that the sine of the maximum prior excursion
angle should be small (sin2 (x (r)NT) < g). This condition
is easily satisfied in the application which we show next,
namely, the measurement of anisotropic diffusion in a
lamellar liquid crystal.

4.3. Anisotropic diffusion in a lamellar phase under shear

Fig. 10 shows the diffusion spectrum measured at zero
shear in the lamellar system CPyCl/hexanol/brine. A
detailed analysis of the low shear rate dependence of the
diffusion spectrum has been published elsewhere [23].

In Fig. 11, we show a succession of high frequency
(short T) diffusion coefficients for both the radial and tan-
gential components, at shear rates of 0.05 s�1, 5 s�1, and
15 s�1. In these measurements, the total encoding time,
NT, was around 100 ms The gradual loss of anisotropy is
probably due to a conversion of the lamellar phase to the
onion phase under shear. Using Eq. (10) we are able to pre-
dict the flow contribution to the echo attenuation, and
these are shown as straight lines in Fig. 11. It is clear that
the experimental measurements are not significantly per-
turbed given the parameters used in these measurements.
of water molecules within lamellar bilayers of CPyCl/hexanol/brine as the
1. Note the decreasing anisotropy as the lamellar to onion state transition

dashed (radial) and solid (tangential) lines, and only at 15 s�1 is does the

in lamellar bilayers of CPyCl/hexanol/brine at zero shear. The gradient is
enuation data yield the diffusion spectrum shown on the right.



92 A. Lutti, P.T. Callaghan / Journal of Magnetic Resonance 180 (2006) 83–92
5. Conclusions

The theory presented here for describing the perturba-
tive effect of flow on diffusion measurements in the pres-
ence of shear, is particular to the CPMG multi-gradient
pulse train, and the Newtonian flow field of the Couette
cell. However, we assert that such calculations could be
easily reproduced for other geometries and flow fields. Cer-
tainly, we have shown that it is quite straightforward to
measure diffusion coefficients in excess of 10�10 m2 s�1 for
shear rates below 10 s�1. Of course these calculations apply
to a 1 mm gap. It is possible to achieve diffusion measure-
ment accuracy at considerably higher shear rates if the
Couette cell gap is reduced, and especially if the effective
gradient period time T is further reduced.

It is tempting to consider the prospect of correcting the
apparent diffusion coefficient for flow effects under known
conditions. We assert that this is exceedingly difficult
because of the high sensitivity of the artifactual echo atten-
uation on the exact details of the flow field, and even small
deviations from Newtonian behaviour can have a marked
effect. However, it is perfectly clear that one may calculate
the experimental regime in which accurate measurements
can be safely performed, given a rudimentary knowledge
of the flow behaviour.

A particularly interesting question concerns the practi-
cal lower limits to the period T of the effective gradient
period time, given the dependence of Dflow on T2. We have
found it difficult to reduce below T = 8 ms, because of rise
time effects and the limited gradient strength. Any major
improvement in gradient technology relating to these limits
may considerably extend the use of diffusion anisotropy
measurements to higher shear rates than those reported
here.
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